
Page 1 

 Causal Inference for Quantifying Displaced Primary 1 

Production from Recycling 2 

To be submitted to Environmental Research Letters 3 

DRAFT – DO NOT DISTRIBUTE 4 

Joseph Palazzo* 
1)

, Roland Geyer
1)

, Richard Startz
2) 

, Douglas G. Steigerwald
2)

 5 

1)
 Bren School of Environmental Science and Management, 6 

University of California, Santa Barbara, CA, 93106, USA 7 

2)
 Department of Economics, University of California, Santa Barbara, CA, 93106, USA 8 

 9 

*Corresponding author: 10 

Joseph Palazzo, jpalazzo@bren.ucsb.edu, +1 845 820 0694 (tel), +1 805 893 7612 (fax)  11 

2400A Bren Hall, UCSB, Santa Barbara, CA 93106 12 

 13 

 14 

Abstract 15 

Recycling only creates environmental benefits when it displaces other material production. It is 16 

therefore critically important that we improve our understanding of the causality between the 17 

two. This research focuses on estimation of the causal link between an increase in recycling and 18 

a reduction in primary production.  We first review how structural models of supply and demand, 19 

for both the primary material and the recycled material, can be used to identify a causal link.  20 

The supply and demand approach suffers from issues of endogeneity, which require the use of 21 

advanced regression techniques. These techniques, in turn, require detailed and large datasets, 22 

which are often hard to obtain. We present the Difference-in-Differences (DID) estimator as an 23 

alternative approach.  The DID estimator is based on a quasi-experimental approach, in that it 24 

classifies data into treatment and control groups.  We introduce the new method, analyze the data 25 

structures and assumptions needed for identification of causal effects, and discuss the advantages 26 

relative to the supply and demand framework. A hypothetical application of each method to 27 

aluminum recycling is provided. Our proposed method will help to better understand, measure, 28 

and promote the conditions under which recycling creates environmental benefits. 29 

 30 
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1. Introduction 31 

Recycling is the process of converting what would otherwise be waste into secondary 32 

resources to be used again in the economy. In public environmental policy, recycling is seen as a 33 

way to keep solid waste out of landfill. Recycling, or secondary material production, is also a 34 

topic that has received intense attention throughout the history of the field of industrial ecology. 35 

It turns out that the sole environmental benefit of  secondary production is that it can displace, or 36 

avoid, other material production processes (Zink et al 2015, Geyer et al 2015, Yang 2016). Such 37 

displacement leads to all other perceived benefits of recycling such as landfill reduction, energy 38 

savings, and reductions in raw material usage (Geyer et al 2015). Unfortunately, the actual 39 

mechanisms of displacement have not been studied until recently. 40 

From early to recent times, displacement has simply been assumed to happen on a 100% 41 

basis, which means that each unit of recycled material displaces one unit of primary material. In 42 

environmental life cycle assessment (LCA), this assumption is used in the so-called “avoided 43 

burden approach”, which serves to allocate the benefits of recycling between the two product 44 

systems connected through the recycling activity (Atherton 2007, Weidema 2001, Frischknecht 45 

2010). While authors have acknowledged that quantifying displacement precisely is important 46 

(Mcmillan et al 2012, Weidema 2003, Geyer et al 2015, Geyer 2008, Ekvall 2000, Vadenbo et al 47 

2017), only one comprehensive statistical analysis of displacement exists in the industrial 48 

ecology literature (Zink et al 2017). 49 

The extent to which more scrap and waste collection leads to additional secondary 50 

production, and then to displacement, has predominantly been treated as a market equilibrium 51 

problem in the literature and approached by assuming or calculating price elasticities (Ekvall 52 

2000, Zink et al 2015, 2017, Weidema 2003, Ekvall and Andrae 2006). Displacement has also 53 

been identified as a key issue in the methodological development of consequential life cycle 54 

assessment (CLCA), which strives to model the net environmental impacts of a change to an 55 

industrial system considering all physical and social processes affected (Weidema 2003, 56 

Zamagni et al 2012, Brander et al 2009, Ekvall et al 2016, Koffler and Finkbeiner 2017). In 57 

general, much of the industrial ecology literature has equated social processes with markets and 58 

their equilibria (Earles and Halog 2011, Weidema 2003, Weidema et al 2009, Zamagni et al 59 

2012, Rajagopal 2016). 60 
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Structural market models of primary and secondary variants of one material in isolation from 61 

the rest of the economy have been the primary tool proposed and applied to calculating 62 

displacement (Ekvall and Andrae 2006, Zink et al 2015, 2017, Ekvall 2000). It has been shown 63 

that this can be used to assess the displacement of primary aluminum due to aluminum recycling 64 

in North America (Zink et al 2017). However, supply and demand models are only one avenue to 65 

study cause-and-effect mechanisms using observational data.  66 

In this paper, we generalize displacement as a question of the cause-and-effect relationship 67 

between secondary production and primary material and show that structural market equilibrium 68 

models are not the only possible approach. We identify and investigate the use of an alternative 69 

method for causal inference, Difference-in-differences (DID), for quantifying the causal 70 

relationship between recycling and primary production.  We thoroughly examine the statistical 71 

problems and assumptions, causal mechanisms, and operationalization of the two approaches 72 

without loss of generality. Idealized case studies for the two methods are hypothesized using 73 

aluminum as a platform. Finally, we discuss applying these methods to other displacement 74 

problems and the significance of this research in environmental policy and the field of industrial 75 

ecology. 76 

2. Generalized displacement  77 

Figure 1 shows a generalized displacement problem. The solid green line represents 78 

secondary aluminum production 𝑄𝑠𝑒𝑐 over time for a regional aluminum market. Prior to the year 79 

2000, secondary aluminum was not produced in this particular market. In the year 2000, an 80 

exogenous shock occurs, i.e. a shock that did not affect demand for aluminum directly, hence the 81 

dashed lines have the same slope before and after the year 2000. This shock leads to the 82 

production of 150 tons of secondary aluminum per year going forward. One example of such a 83 

shock would be a legislative act suddenly mandating aluminum producers to increase secondary 84 

production. We ask the following question: does additional secondary production cause a 85 

decrease in primary production? This question is critical because such an outcome reduces our 86 

reliance on raw natural resources and typically reduces the total impact of production. This 87 

impact reduction dynamic may affect the environmental assessment of policy-driven changes to 88 

product systems. One example is material substitution in vehicles, where lack of displaced 89 

production through recycling would affect the environmental performance of light-weight 90 

Page 3 of 17 AUTHOR SUBMITTED MANUSCRIPT - ERL-105048

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 4 

materials (Løvik et al 2014, Geyer 2008, Modaresi and Müller 2012, Modaresi et al 2014). The 91 

dotted lines in Figure 1 (a) are the trends in primary aluminum production 𝑄𝑝𝑟𝑖𝑚 over time, and 92 

in Figure 1 (b) they represent the trends in total aluminum production  𝑄𝑡𝑜𝑡 = 𝑄𝑠𝑒𝑐 + 𝑄𝑝𝑟𝑖𝑚.  93 

  94 

 95 

Figure 1: Total quantity of material produced as a function of time with an exogenous shock 96 

leading to additional secondary production in the year 2000. Displacement is a research 97 

question about what happens after this influx of secondary material. The question can be 98 

answered by observing what happens to the primary quantity produced after the shock. Panel (a) 99 

shows what happens to primary production for 0%, 50% and 100% displacement. Panel (b) 100 

shows the same for total production. 101 

Consider the case where this influx of secondary material goes onto the regional market for 102 

automotive materials. In the scenario represented by the black line in Figure 1, all of the 103 

secondary aluminum is used to replace primary aluminum (i.e. 150 tons per year), which is 100% 104 

displacement. The red line represents the scenario where only 75 tons of the secondary 105 

aluminum is used to replace primary aluminum, which is 50% displacement. In a third scenario 106 

represented by the blue line, none of the secondary aluminum is used to replace primary 107 

aluminum, which is 0% displacement. These examples illustrate the definition of 108 

displacement: 𝑑 = 1 −
∆𝑄𝑡𝑜𝑡

∆𝑄𝑠𝑒𝑐
=

−∆𝑄𝑝𝑟𝑖𝑚

∆𝑄𝑠𝑒𝑐
. 109 

In general, there are numerous forces affecting the regional demand for aluminum such as 110 

GDP, incomes, and the prices of substitute materials. These other forces will affect how much 111 

aluminum is used in automobile manufacturing. In consequence, one cannot estimate the 112 
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displacement rate simply by computing the observed change in primary and secondary 113 

production. To control for these other forces, one could specify a linear regression model with 114 

the functional form  115 

𝑄𝑝𝑟𝑖𝑚 = 𝛼 + 𝛽1𝑄𝑠𝑒𝑐 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 + 𝜀              (1),  116 

where ∑ 𝛽𝑖𝑋𝑖
𝑘
𝑖=2  capture the effect of these forces, and 𝜀 is the regression error term. 117 

Unfortunately, Ordinary Least Squares (OLS) estimates of the effect of 𝑄𝑠𝑒𝑐 on  𝑄𝑝𝑟𝑖𝑚 (𝛽1) are 118 

likely to be biased and inconsistent due to endogeneity. This presents itself when the explanatory 119 

variable of interest is correlated with the regression error term. It also threatens the identification 120 

of causal effects from the regression coefficients. Endogeneity arises for a number of reasons, 121 

but is frequently due to simultaneous causality between the dependent variable and the 122 

explanatory variable. While we expect secondary production to have an effect on primary 123 

production, we equally expect that changes in primary production affect secondary production; 124 

thus, simultaneous causality is a significant concern in the estimation of Equation 1. 125 

3. Previous approach: Supply and Demand 126 

3.1. Framework 127 

A classical approach to address endogeneity is to estimate a structural model of supply and 128 

demand for primary and secondary aluminum using instrumental variable methods rather than 129 

OLS (also known as Partial Equilibrium Analysis). This approach has been used historically and 130 

frames displacement micro-econometrically, meaning that price responses of supply and demand 131 

are assumed to drive the causal relationship between secondary production and primary 132 

production (Zink et al 2015, 2017, Ekvall 2000, Ekvall and Andrae 2006).  One would estimate 133 

functional relationships between supply and demand of primary and secondary material and their 134 

explanatory variables, which include endogenous prices and exogenous shifters. Equation 2 135 

shows a simplified set of simultaneous equations of supply and demand for primary and 136 

secondary material ( 𝑄𝑆𝑝𝑟𝑖𝑚, 𝑄𝑆𝑠𝑒𝑐, 𝑄𝐷𝑝𝑟𝑖𝑚 and 𝑄𝐷𝑠𝑒𝑐) along with equilibrium conditions.  137 

𝑄𝑆𝑝𝑟𝑖𝑚 = 𝛼1 + 𝛽1𝑃𝑝𝑟𝑖𝑚 +  𝜋1𝑆𝐻𝐼𝐹𝑇𝑆𝑝𝑟𝑖𝑚 + 𝜀1  138 

𝑄𝐷𝑝𝑟𝑖𝑚 = 𝛼2 + 𝛾1𝑃𝑝𝑟𝑖𝑚 + 𝜇1(𝑃𝑠𝑒𝑐 − 𝑃𝑝𝑟𝑖𝑚) + 𝜋2𝑆𝐻𝐼𝐹𝑇𝐷𝑝𝑟𝑖𝑚 + 𝜀2  139 

𝑄𝑆𝑠𝑒𝑐 = 𝛼3 + 𝛽2𝑃𝑠𝑒𝑐 + 𝜋3𝑆𝐻𝐼𝐹𝑇𝑆𝑠𝑒𝑐 + 𝜀3  140 

𝑄𝐷𝑠𝑒𝑐 = 𝛼4 + 𝛾2𝑃𝑠𝑒𝑐 + 𝜇2(𝑃𝑝𝑟𝑖𝑚 − 𝑃𝑠𝑒𝑐) + 𝜋4𝑆𝐻𝐼𝐹𝑇𝐷𝑠𝑒𝑐 + 𝜀4   141 
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𝑄𝑆𝑝𝑟𝑖𝑚 = 𝑄𝐷𝑝𝑟𝑖𝑚  142 

𝑄𝑆𝑠𝑒𝑐 = 𝑄𝐷𝑠𝑒𝑐                  (2) 143 

In this system, 𝛼𝑛 are intercepts, 𝛽𝑛 are own-price responses of supply, 𝛾𝑛 − 𝜇𝑛 are own-144 

price responses of demand,  𝜇𝑛 are cross-price responses of demand, 𝑆𝐻𝐼𝐹𝑇𝑋 are the exogenous 145 

shifters,  𝑃𝑥 are price variables and 𝜀𝑛 are unobserved error terms. Observations of quantities, 146 

prices, and shifters are gathered empirically and used to estimate a set of four regressions. After 147 

the coefficients on the equations are estimated, a shock is introduced to 𝛼1, or to the supply of 148 

secondary material. Solving the system again after introducing a shock simulates how primary 149 

supply would respond to the change in the secondary supply. The algebra behind this is detailed 150 

in Zink et. al, 2015. We note that in practice, prices of substitutes and additional control variables 151 

are likely to come into play and complicate the algebra even further. 152 

Estimating four simultaneous equations bypasses the particular statistical issue posed in the 153 

OLS estimation of Equation 1. However, price is endogenous in the vast majority of markets, 154 

leaving us with a new statistical issue. Prices cause supply and demand to change, but changes in 155 

supply and demand also affect price, which clearly constitutes simultaneous causality 156 

(Wooldridge 2012).  The supply and demand framework approach restores the causal 157 

interpretation of price-response parameters by estimating four two-stage least squares (2SLS) 158 

equations with instrumental variables. The first stage of 2SLS consists of estimating a regression 159 

with the endogenous variable as the dependent variable, and the instrument(s) as well as all other 160 

exogenous covariates on the right hand side. This generates an estimate for the value of the 161 

problem (endogenous) variable that corrects for endogeneity bias, which is substituted into the 162 

original regression equation. The second stage is estimating the original regression using the 163 

values of the endogenous variable estimated from the first stage. In practice, 2SLS software 164 

commands avoid the need for two separate regressions and ensure correct estimates of standard 165 

errors. 166 

Consider the first two components of Equation 2. In the case of primary supply, the price of 167 

primary material is the endogenous variable. For primary demand, both the price of primary 168 

material and the price difference between primary and secondary material are endogenous. 169 

Estimating 2SLS requires that there are at least as many instruments as endogenous variables for 170 

each equation. The instruments for the primary supply equation are exogenous shifters of 171 

primary demand, secondary supply, and secondary demand. The instruments for the primary 172 
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demand equation are exogenous shifters of primary supply, secondary supply, and secondary 173 

demand. Thus, there are at least three instruments for each equation, assuming that we are able to 174 

find unique and exogenous shifters for primary supply, primary demand, secondary supply, and 175 

secondary demand. Equation 3 provides an example of a first stage regression for the primary 176 

supply equation, which generates 𝑃𝑝𝑟𝑖𝑚̂, the estimate for 𝑃𝑝𝑟𝑖𝑚 that corrects for endogeneity. We 177 

must replace all price variables in (2) with their corrected versions. 178 

𝑃𝑝𝑟𝑖𝑚 = 𝛿1 + 𝜏1𝑆𝐻𝐼𝐹𝑇𝐷𝑝𝑟𝑖𝑚 + 𝜏2𝑆𝐻𝐼𝐹𝑇𝑆𝑠𝑒𝑐 + 𝜏3𝑆𝐻𝐼𝐹𝑇𝐷𝑠𝑒𝑐 + 𝜏4𝑆𝐻𝐼𝐹𝑇𝑆𝑝𝑟𝑖𝑚 + 𝜔1  179 

𝑃𝑝𝑟𝑖𝑚̂ = 𝛿1̂ + 𝜏1̂𝑆𝐻𝐼𝐹𝑇𝐷𝑝𝑟𝑖𝑚 + 𝜏2̂𝑆𝐻𝐼𝐹𝑇𝑆𝑠𝑒𝑐 + 𝜏3̂𝑆𝐻𝐼𝐹𝑇𝐷𝑠𝑒𝑐 + 𝜏4̂𝑆𝐻𝐼𝐹𝑇𝑆𝑝𝑟𝑖𝑚 + 𝜔1̂         (3) 180 

It turns out that identifying these unique shifters is not so straightforward. In practical 181 

applications, the exogeneity of shifters is frequently debatable, which threatens the identification 182 

of causal effects. The following discussion illustrates ideal, but hypothetical shifters for all four 183 

equations in the case of aluminum. 184 

A truly unique and exogenous shifter of primary aluminum supply would be a measure of 185 

political unrest in countries that are primary bauxite suppliers, as bauxite is the key raw material 186 

input for aluminum production. One could create a variable indicating how many bauxite-187 

producing countries experience unrest in a given year, for example. Of course, there must be 188 

variation in unrest over time. In the case of primary aluminum demand, consider increased costs 189 

of shipping for iron ore that increase the cost of steel, making steel sheet for automotive body 190 

parts prohibitively expensive. Primary aluminum is the best-known substitute, thus demand for 191 

primary aluminum is shifted exogenously by the variation in iron ore shipping costs.  192 

Legislation aimed at increasing recycling rates, such as the “bottle bills” offering deposits for 193 

recycling aluminum cans throughout the United States (State of Oregon 1971, State of Hawai’i 194 

2002), have been shown to be exogenous shifters of secondary aluminum supply (Container 195 

Recycling Institute 2005). For use in the structural market model, it is required that such policies 196 

vary over time, for example by gradually increasing in geographic scope. Finally, an exogenous 197 

shifter of secondary aluminum demand would be the purity of recycled aluminum over time, 198 

which may increase due to technological improvements. This would exogenously increase the 199 

amount of applications where recycled aluminum is a viable substitute. 200 

Figure 2 illustrates the causal pathways of the supply and demand framework via price-201 

quantity relationships, showing how the supply and demand curves for primary aluminum are 202 

shifted by the instrumental variables. Shifting the primary demand curve traces out the primary 203 
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supply curve, and vice versa. This is the key concept in restoring the causal relationship between 204 

quantity and price (Stock 2001). 205 

 206 

 207 

Figure 2: Causal pathways in the supply and demand framework illustrated via price-quantity 208 

(P-Q) relationships. Panel (a) shows that one instruments for the primary supply equation shifts 209 

the primary demand curve from D to D’, while panel (b) shows that one instrument for the 210 

primary demand equation shifts the primary supply curve from S to S’.  211 

3.2. Case Study 212 

The lone case study using this methodology explores the question of whether or not 213 

aluminum recycling in the U.S. displaces primary production between 1971 and 2013 (Zink et al 214 

2017). The exogenous shifters are prices of substitutes as well as a series of process inputs and 215 

economic factors (Blomberg and Hellmer 2000, Blomberg and Söderholm 2009), which are not 216 

as strong as the idealized shifters we propose above. This is a ubiquitous issue in the 217 

identification of causal effects using structural market models. The authors use 43 annual 218 

observations of all variables on the national level. The small number of observations contributed 219 

to a high level of uncertainty in the results. In fact, in the initial year following a 5% shock to 220 

secondary supply, displacement estimated via Monte Carlo simulations has a 5
th

 to 95
th

 221 

percentile range of approximately [-50%, 100%] (Zink et al 2017). 222 

3.3. Advantages & Disadvantages 223 

Structural supply and demand models offer a methodology for estimating displacement in 224 

competitive markets based on classical economic theory. The structural equations for supply and 225 
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demand determine the instruments, which are the unique exogenous shifters used in the 2SLS 226 

regressions. Thus, setting up the structural equations implicitly provides a solution to price 227 

endogeneity and establishes identification of causal effects.  228 

On the other hand, the causal interpretation of supply and demand models requires that the 229 

market in question be competitive, in that no individual agent or small group of agents can 230 

determine how that market operates. A model of the form of Equation 2 further requires that the 231 

effect of price is linear and homogenous. Identifying four unique and exogenous shifters of 232 

supply and demand is challenging, and failure to do so introduces bias to the estimation and 233 

complicates interpretation of the model. The challenge is amplified in settings where we seek to 234 

observe multiple market segments, where shifters are needed for each segment. To overcome 235 

these challenges we developed the following framework for quantifying displacement. 236 

4. Novel Approach: Quasi-experimental  237 

4.1. Framework 238 

Rather than construct a structural supply and demand model for the two markets, one could 239 

approach endogeneity directly through observations of the quantity of primary and secondary 240 

material by seeking out natural experiments in observational data. This quasi-experimental 241 

design could be achieved through the gathering of public data, or via primary data collection. A 242 

quasi-experiment is a situation where endogeneity is addressed by dividing observations into 243 

treatment and control groups based on explanatory characteristics of their values for an outcome 244 

variable of interest over time. Observations could be grouped by firms, industries, or geographic 245 

regions that may use primary and secondary variants of a material, for example. After some time, 246 

an exogenous change to the quantity of secondary material occurs in the treatment group, and the 247 

quantity of primary material in the treatment and control groups are compared before and after 248 

the exogenous change. Several statistical methods may be applied to a quasi-experiment. 249 

Selection of the method depends on the problem at hand and the structure of the data available. 250 

Examples include difference-in-differences (DID), regression discontinuity analysis, and 251 

propensity score matching (Lee and Lemieux 2010, Imbens and Lemieux 2007, Angrist and 252 

Pischke 2009, Caliendo and Kopeinig 2005). We explore the quasi-experimental approach to 253 

displacement through the lens of DID estimation. 254 
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Consider the simplified DID example of Figure 3, where there is an exogenous increase in 255 

the secondary quantity of a material in a subset of market segments (𝑖 = 𝑇𝑅𝐸𝐴𝑇) at time t*=100. 256 

The exogenous increase originates from a source uncorrelated with factors that explain the 257 

underlying trend in the material quantity on the market. There is a control group of market 258 

segments, which do not see any change in secondary material at t*=100. In the period after the 259 

exogenous change at t*=100 (t > t*), observations of the quantity of primary material in both the 260 

treatment and control groups continue to be collected. At time t=300, the difference in primary 261 

material in each market segment between t*=100 and t=300 is measured for both treatment and 262 

control groups. If the additional recycling had no effect on primary material, the difference in 263 

primary material between t*=100 and t=300 would be the same in both groups. In Figure 3, the 264 

treatment group had a lesser difference in primary material from pre-to post-treatment compared 265 

with the control group, thus there is a “difference in the differences”, which is reflected by 𝜃. 266 

This coefficient is interpreted as the increase in secondary material causing a decrease in primary 267 

material given that the identification restrictions outlined in Section 4.2 are satisfied. One would 268 

determine 𝜃 using a regression with form of Equation 4: 269 

 𝑄𝑖𝑡
𝑝𝑟𝑖𝑚 

= 𝜇 + 𝛿{𝑖 = 𝑇𝑅𝐸𝐴𝑇} + 𝜌{𝑡 > 𝑡∗} + 𝜃{𝑖 = 𝑇𝑅𝐸𝐴𝑇} ∗ {𝑡 > 𝑡∗} + 𝜀𝑖𝑡          (4),  270 

where 𝑄𝑖𝑡
𝑝𝑟𝑖𝑚 

 is the observation of primary material in market segment i (treatment or control) in 271 

period t (pre- or post-treatment), {𝑖 = 𝑇𝑅𝐸𝐴𝑇} takes the value 1 for treated observations and 0 272 

for controls, {𝑡 > 𝑡∗} takes the value 1 in the post treatment period and 0 in the pre-treatment 273 

period, and 𝜀𝑖𝑡 is the error term (Angrist and Pischke 2009). The effect of interest is identified 274 

by 𝜃, the coefficient on {𝑖 = 𝑇𝑅𝐸𝐴𝑇} ∗ {𝑡 > 𝑡∗}, which has a value of 1 for observations of the 275 

treatment group in the post-treatment period. The change in primary material 𝜃 reflected in the 276 

regression is converted into displacement by observing the change in secondary material and 277 

applying the identity 278 

𝑑 = −
∆𝑄𝑝𝑟𝑖𝑚

∆𝑄𝑠𝑒𝑐
= −

𝜃

∆𝑄𝑠𝑒𝑐
, where ∆𝑄𝑠𝑒𝑐 is the increase in recycling that occurs at t*. 279 
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 280 

Figure 3: Difference-in-differences estimation of displacement due to increases in recycling. The 281 

treatment group of market segments experiences a sudden increase in recycling at t*=100. The 282 

quantity of primary material is measured in each period, and 𝜃 gives the DID estimate of the 283 

change in the quantity of primary material caused by exogenous shift in recycling activity.  284 

4.2. Firm-Level Case Study 285 

We return to the example of automobile manufacturing from the generalized displacement 286 

discussion in Section 2. Consider the scenario where groups of treatment and control firms 287 

operating in similar markets both use primary aluminum. The treatment firms absorb additional 288 

secondary aluminum generated from an exogenous, policy-driven shock. The control firms do 289 

not pursue use of the additional secondary aluminum provided by the shock. Selection into the 290 

treatment group is random conditional on observable characteristics of the firms. In this 291 

hypothetical system, we gather monthly statistics on primary and secondary aluminum used in 292 

each firm i on a per vehicle basis. At t*=100, an exogenous, policy-driven shock to the quantity 293 
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of secondary aluminum occurs and is absorbed by the treatment group of firms. We continue to 294 

measure primary aluminum used per vehicle by the treatment and control firms until t=300.  295 

In this application, use of DID requires that the trends in primary aluminum consumption by 296 

the treatment and control firms were parallel prior to t*=100 or that any differences in the trends 297 

could be accounted for by observable quantities. For example, the trend in primary aluminum 298 

quantity may look different for firms that produce economy class vehicles versus those that 299 

produce luxury class vehicles. This is one example of a factor that needs to be included in the 300 

DID regression as a control, ensuring that treatment is random conditional on what we observe. 301 

With the appropriate controls in place, one could estimate a regression with the form of Equation 302 

5, where 𝑄𝑖𝑡
𝑝𝑟𝑖𝑚 

 is the per-vehicle quantity of primary aluminum used in firm i during month t. 303 

𝑄𝑖𝑡
𝑝𝑟𝑖𝑚 

= 𝜇 + 𝛿{𝑖 = 𝑇𝑅𝐸𝐴𝑇} + 𝜌{𝑡 > 𝑡∗} + 𝜃{𝑖 = 𝑇𝑅𝐸𝐴𝑇} ∗ {𝑡 > 𝑡∗} + 𝛾1𝐶𝐿𝐴𝑆𝑆𝑖𝑡 + ⋯ +304 

∑ 𝛾𝑘𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝑖𝑡
𝐾
𝑘=2 + 𝜀𝑖𝑡                (5) 305 

The displacement effect is given by 𝑑 = −
∆𝑄𝑝𝑟𝑖𝑚

∆𝑄𝑠𝑒𝑐
= −

𝜃

∆𝑄𝑠𝑒𝑐
. 306 

The first identifying assumption of the DID causal effect is referred to as the parallel trends 307 

assumption, and means that we assume the post-treatment trend in per vehicle primary aluminum 308 

use would be the same between the treatment and control firms in the absence of treatment 309 

(Angrist and Pischke 2009). The robustness of this assumption can be examined, for example, by 310 

comparing the trends in per vehicle primary aluminum use between treatment and control groups 311 

for the period prior to t*=100 and verifying they were actually parallel. The second necessary 312 

condition is that the treatment, or sudden increase in recycling, did not coincide with another 313 

exogenous shock affecting primary aluminum use differently in the treatment and control groups. 314 

The causal interpretation of the result is threatened if, for example, a policy requiring improved 315 

fuel economy emerges at the same time as the exogenous shock to recycled aluminum, and the 316 

treatment and control firms respond by decreasing the mass of their vehicle fleets in ways that 317 

affect their primary aluminum use differently. Lastly, the causal interpretation requires that the 318 

additional secondary aluminum in the treatment group does not interact with the control group. 319 

In other words, the additional secondary aluminum cannot be sold by treatment firms to control 320 

firms. The trade of secondary aluminum across groups threatens identification because the 321 

treatment will have an effect on outcomes in the control group.   322 
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We must also consider the estimation of standard errors, which is influenced by assumptions 323 

regarding the correlations between values of 𝜀𝑖𝑡. Classic standard errors are not sufficient, as they 324 

assume the error terms are uncorrelated and of constant variance, something that is highly 325 

unlikely in practice.  The correct standard error estimator depends on the structure of the data. 326 

One general alternative, that adjusts for arbitrary temporal correlation, is to use the Newey-West 327 

estimator (Newey and West 1987, Petersen 2009). In the case of Equation 5, we could also 328 

account for the likely scenario that unobserved sources of variance in primary production are 329 

clustered by firm, in which case it is more appropriate to use a cluster-robust estimator.  These 330 

strategies alleviate the risk of constructing standard error estimates that are systematically too 331 

small, which would lead to over-rejection of the null hypothesis that 𝜃1 = 0 (Cameron and 332 

Miller 2015). One must also pay attention to the number of firms and the evenness of the 333 

distribution of observations across clusters, as cluster heterogeneity may present issues in 334 

hypothesis testing (Lee and Steigerwald 2017, Carter et al 2016). 335 

4.3. Advantages & Disadvantages 336 

DID uses a simpler regression framework with reduced data requirements compared to 337 

structural supply and demand models for estimating displacement. It avoids the need for 338 

exogenous shifters of supply and demand in two markets, and the aforementioned complications 339 

that go with them. However, unlike the supply-demand framework, DID requires careful 340 

balancing of treatment and control observations to avoid biased results due to confounding 341 

factors. DID treatment interventions are generally easier to defend as plausibly exogenous than 342 

the four shifters in the supply-demand framework. This is because the treatment is sharply 343 

defined and pre-treatment parallel trends imply quasi-random assignment of treatment. 344 

DID studies also present inherent limitations. The most critical challenge with DID is that the 345 

parallel trends assumption is dependent on a counterfactual trend in the treated observations, 346 

which cannot be verified, although the testing of pre-treatment trends helps to mitigate this 347 

problem. Another key disadvantage of DID is that the parallel trend assumption is dependent on 348 

the way in which the parameter is measured (Lechner 2011, Bertrand et al 2002). For example, 349 

the parallel trends in primary aluminum production from Figure 3 may not hold for elementary 350 

transformations of this variable (i.e. log material production). Underestimation of standard errors 351 
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due to serial correlation of the treatment and outcome variables is also a known problem leading 352 

to misleading conclusions in DID studies (Bertrand et al 2002). 353 

It is also important to recognize the difference in scope between structural supply and 354 

demand models and a firm-level DID approach. Zink and Geyer (2017) compared partial 355 

displacement of recycling to the so-called rebound effect of increases in energy efficiency and 356 

thus called it ‘circular economy rebound’. Energy efficiency rebound literature typically 357 

distinguishes between direct and indirect effects. For example, if a household acquires a more 358 

energy-efficient car, it could use the fuel cost savings to a) drive more (direct rebound) or b) 359 

purchase other goods and services (indirect rebound). In an analogous way, increased use of 360 

secondary automotive material could lead to increased total material use in the automotive 361 

sector, or increased use in other sectors, such as packaging. A structural supply and demand 362 

model would capture direct and indirect effects, while the firm-level DID approach outlined in 363 

section 4.2 would measure only the direct effect. 364 

5. Outlook 365 

We have framed the discussion of displacement in terms of primary and secondary 366 

production of a given material, say aluminum, but there are many other related questions of 367 

interest. For example, it is possible that aluminum recycling leads to less use of both primary and 368 

secondary plastics, as aluminum is used in many packaging applications. Displacement may also 369 

be an issue in generalized material substitution, regardless of whether or not the substitute 370 

material originates from recycling. Consider the case where primary aluminum is substituted for 371 

primary steel in vehicles. Displaced production of primary steel by additional primary aluminum 372 

production may not be solely determined by physical parameters in the product system. 373 

Tangential effects, driven by price disturbances or other social parameters, could influence the 374 

production volumes of both materials in significant ways. For example, losing sales in one sector 375 

might lead to efforts to increase sales in other sectors rather than simply reduce production. 376 

Understanding the net environmental consequences of changes to product systems requires a 377 

deep understanding of the physical and social processes that cause the systems to evolve over 378 

time. This notion is at the core of studies of displacement and of CLCAs in which displacement 379 

is a key parameter. Thus, we emphasize the importance of frameworks other than structural 380 

models of supply and demand in quantifying the social impacts of changes to product systems. 381 
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The use of quasi-experimental methods offers an avenue to advance our knowledge of how 382 

social processes translate into physical outcomes, a concept that remains in its infancy in LCA 383 

and industrial ecology. This undertaking is essential in order to strengthen the relevance of 384 

sustainability assessments for decision-making. 385 
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